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Abstract 
In the industrial sector, transmission lines are an important part of the electrical grid. Thus it is important 

to protect it from all the different faults that may occur as soon as possible to supply the electric power 

continuously. This paper presents a modern solutions and a comparative study of fault detection and 

identification in electrical transmission lines using artificial neural network (ANN) compare to the fuzzy logic. 

Faults in transmission line of various types have been created using simulation model. An intelligent monitoring 

system (IFD: Intelligent Fault Diagnosis) was used at both ends of a 230 kV overhead transmission line, voltage 

and current measurements exploited as indicator data for this system. Both approaches were found to be robust, 

accurate and reliable to detect the fault when it occurs, to determine the fault type short circuit or opening of a 

power line (open circuit), to locate the fault and to determine which phase was faulted. 
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ABBREVIATION AND ACRONYMS 

 

iabc: Three-phase currents; 

vabc: Three-phase voltages; 

OC: Open Circuit; 

SC: Short Circuit; 

ANN: Artificial Neural Network; 

IFD: Intelligent Fault Diagnosis; 

L: Inductance, C: Capacitor, R: Resistance; 

G: Ground, l: Line length; 

Phi and i=a,b,c Electrical phase; 

X: Variable; 

Va: Electrical voltage amplitude of phase (a); 

Ia: Electrical current amplitude of phase (a); 

m: measurement, Sb: Base power; 

Qk, Hk, Lk, VLk (and k=1,2,3…): Linguistic 

variables. 

 

1. INTRODUCTION 

 

In power systems, transmission lines play an 

important role that is transferring electric power 

from the generating station to load centers, the 

occurrence of different types of faults on the 

transmission line is a fact in daily life, although such 

faults rarely occur and occur at random locations 

Therefore, a well-coordinated protection system 

must be provided to quickly detect and isolate faults, 

thus minimizing damage to the power system. These 

faults can be categorized to shunt faults (short-

circuit) and series faults (open-circuit) [1], various 
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possible short circuit faults can be a single phase-

ground short-circuit L-G (Pha-gnd, Phb-gnd, Phc-

gnd), double phases-ground short-circuit 2L-Gnd 

(Phab-gnd, Phbc-gnd, Phac-gnd), double phase-

ground short-circuit 2L without the ground (Pha-b, 

Phb-c, Pha-c) and three phases short-circuit 3L (Pha-

b-c) with or without the ground [2, 3]. Similarly open 

circuit faults can be at one phase, two phases or all 

three phases. 

Until now, numerous methods have been 

conducted to diagnose the transmission lines, these 

methods can be divided into several categories based 

on impedance measurement, traveling wave 

techniques, time domain current & voltage 

measurements and artificial intelligence. 

Several diagnostic techniques are investigated in 

previous works, as following: Impedance-based 

methods are mostly divided into two ends methods 

[4, 5] and one end methods [6, 7], which are 

considered to be accurate and complete. However, 

they bring complexity and high computational cost, 

as some asynchronous methods may have two 

different results, thus requiring a 

telecommunications system between the two 

diagnostic stations and an accurate model of the 

faulted transmission line. The travelling waves 

methods based on the high-frequency forward and 

backward fault signals propagating to both ends 

along the transmission line, knowing the propagation 

velocity of waves, the fault location can be 

calculated after determining the time when these 
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signals arrive to the ends, these methods can be 

classified into two ends methods [8, 9], one end 

methods [10, 11] or both, in [12] a combination of 

one-end and two-ends techniques is used, although 

this algorithm accurate and useful to determine the 

simultaneous faults locations however the obtained 

accuracy depends on precise synchronization 

between the two ends which is not economical. In 

[13], the authors introduced a traveling-wave-based 

algorithm, this method aims to improve the fault 

location accuracy by eliminating the synchronization 

error, yet, in order to realize this method, many 

measurement devices and satellites are required. A 

combination of TW and machine learning was 

introduced in [14], this method has some 

disadvantages not only it requires a large data and 

thousands of samples but also the accuracy decreases 

when the fault is further, in general, these methods 

have many advantages to summarize: They have a 

high accuracy, speed and reliability, in addition they  

are unaffected by load variations or high ground 

resistance however, the disadvantage of these 

methods is that they are costly and require high 

sampling frequencies ,some of two ends methods 

require additional devices or an implemented Global 

Positioning System (GPS)for synchronizing the 

signals at both ends [13, 15]. 

Time domain methods depends on voltages and 

currents measurements [16, 17]. exploitation of 

these measurements it varies, in [18] the authors 

introduce an instantaneous phase angles based- 

method, that works satisfactorily for high impedance 

fault and is robust to harmonics however requires a 

high samplings rate. Another method based on 

positive sequence superimposed network during 

auto-reclosing presented in [19] which is reliable and 

accurate yet the execution time of the proposed 

method is up to 3 minutes. In [20] Ensemble Kalman 

Filter presented which is simple method and 

effective, some other methods rely on transforming 

signals from time domain to frequency domain such 

as Wavelet transform [21], FFT [11], S-transform 

[22] for  features extraction from signals that are 

insufficient and require additional algorithms. 

However, while achieving satisfactory results, these 

methods require in-depth knowledge specific to the 

system configuration. 

In recent years, the application of intelligent 

algorithms has attracted many researchers due to 

their advantages, in which data are collected under 

various fault conditions and used to create database 

and train the algorithms. Comparing the test results 

with the data base to determine the location and type 

of fault. In [23] the authors proposed a method based 

on convolutional neural network (CNN), which is 

worth investigating due to the large amount of data 

required and the use of image processing to obtain 

mainly fault classifications. In the study [24] a neural 

network model is proposed and used by an automatic 

learning algorithm. A multi-stage algorithm based 

on unsupervised feature learning and convolutional 

sparse Auto encoder was introduced in [25]. A 

combinations of support vector machines (SVMs) 

finite impulse response (FIR) filter and artificial 

neural network ANN has been proposed in [26]. 

Fuzzy logic-based methods presented in [27, 28], a 

combination of fuzzy logic with S-transform [3] and 

K-Nearest Neighbor Algorithm in [29]. All these 

algorithms require a large data and some of them 

reliable for just fault classification.  

All of methods above focused on short–circuit 

faults with no considerations to open-circuit faults. 

In this work, two advanced algorithms of 

transmission line fault diagnosis using artificial 

neural network and fuzzy logic were proposed for 

the location and classification of short circuit faults, 

open-circuit faults and the combination of short 

circuit faults-open circuit faults simultaneously.    

Another contribution of this paper is analyzing the 

implementation of intelligent monotoring methods 

then comparing their performance, based on fast 

response times with acceptable delays compared to 

the opening time of the breaker. The originality and 

the basic idea of this study is introduced by the 

detection and identification of all faults types 

occurring in the electrical transmission network, also 

the demonstration of the diagnosis robustness for 

impudent faults or enormous load variations. 

 

2. SYSTEM DESCRIPTION 

 

The figure 1 shows a single line diagram of the 

power system under study which is used to test the 

intelligent surveillance system. It consists of two 

electrical sources connected with 200km AC 

overhead transmission line. 

  
Fig. 1. Power system single line diagram 

 

Figure 2 shows the power system’s structure, it 

consists of a 230kV /50hz source with∠0° phase 

angel connected to a 230kv/50hz source with ∠27° 
phase angel through an AC overhead transmission 

line. The distance between the sources is 200 km, it 

is divided into 4 zones, and each zone is 50 km. The 

intelligent surveillance system was placed in 

beginning of the transmission line to measure the 

currents and voltages (𝐼123, 𝑉123) after taking the 

measurements the intelligent system willshows the 

fault type (short circuit or line drop), the fault zone 

(1, 2, 3, 4) and the fault phase (1001 means phase A-

Ground, 0101 phase B-Ground, 0011….) the full 

faulted phases will represent later. 
The transmission line is represented by a simple 

circuit (π model) [30], which is composed of a 
resistor (R) and an inductance (L) connected in series 
and a capacitor (C) at both ends, as shown in the 
figure 3. 
 

 

 
 

 

Intelligent surveillance 

System  

Fault 
Source 1   

 

Source 2 
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Fig. 2. Diagram of the diagnostic system 

 

 
Fig. 3. Line equivalent schematic 

 

From the modeling we obtain: 

10 III +=     and    
dt

dI
LRIVV 1

1

' +=−      (1) 

From (1), after Laplace Transformation the 

equations become: 

𝐼1 =
𝑉−𝑉 ′

𝑅+𝐿𝑆
   and     𝐼0 =

𝐶

2
.
𝑑𝑉

𝑑𝑡

 𝐿𝑇 
→    𝐼0 =

𝐶

2
. 𝑆. 𝑉

 (2) 

The cyclic inductance:  

𝐿 =
𝜇0

2𝜋
(
𝜇𝑟

4
+ 𝑙𝑛(

𝑑𝑚

𝑟
))   (3) 

The cyclic capacity:  

𝐶 =
2𝜋𝜀0

𝑙𝑛(
𝑑𝑚.2.ℎ𝑚
𝑟.𝐷𝑚

)     (4) 

Where:

 
md : Geometric mean distance between phases. 

mh : Geometric mean height of the phases.   

mD : Geometric mean distance between phases 

and phase images . 

r: Conductor diameter, ε0 : Vacuum dielectric 

permittivity, μ0 : Vacuum magnetic permeability, 

μr : Relative magnetic permeability. 

The transmission-line parameters: Length 

=200km, R=0.103Ω for 1km, L_=0.0013H for 1km, 

Sb=500MVA, C=8.2e-9 for 1km, Ub= 230 kV. 

 

3. FAULTS TYPES 

 

There are different types of faults in the electrical 

power system. Our focus in this study is the most 

common ones: (Short circuit and Open circuit) in 

transmission line. Figure 4 shows the schematic 

representation of the faults. 

 

 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 4. Faults types 

 

(a) Short circuit to source 1 and open circuit to 

source 2, (b) Short circuit to both sides, (c) short 

circuit to source 2 and open circuit to source 1 and 

(d) open circuit. In all 4 cases the fault type can be a 

single phase to ground (L-G), two phases (L-L), two 

phases to ground (2L-G), three phases (3L-G). 

In case of an interconnected system we will face 

a problem which is how to determine if it is a short 

circuit or open circuit to resolve it we need to use two 

IFD one at each side like shown in figure 5. 

 

 

 

 

 
Fig. 5. Dual Surveillance system 

 

4. DIAGNOSIS SYSTEM OUTPUT 

 

Figure 6 represents the Diagnosis system outputs, 

the first output shows the fault type [1 0] indicates 

the short circuit (SC), [0 1] indicates an open circuit 

(OC) and [0 0] means there is no fault. The second 

output shows the location of the fault at which zone 

(1 to 4). The third output shows which phase is 

faulted. 

 
Fig. 6. Diagnosis system output 

 

Table 1 represents all the cases of the fault type 

(short circuit SC or open circuit OC) to each side’s 

point of view of the intelligent system. 

 
Table 1. Fault type outputs by IFD’s  

Display SC 

side1 

SC 

side2 

OC 

side1 

OC 

side2 

sc 1 1 0 0 1 

sc 1 & sc2  1 1 0 0 

sc 2 0 1 1 0 

oc 1 & oc 2 0 0 1 1 

𝑪/𝟐 

L R 
I I1 

V 
V ‘ 

I0 

𝑪/𝟐 

Source 2   

Open circuit 

Source 2   

Short-circuit 

Source 2   

Short-circuit 

Source 2   

 

Open circuit 

 IFD 

Source 1   

Short-circuit 

Open circuit 

Source 1   

Source 1   

Open circuit 

Short-circuit 

Source 1   

(a)   

(b)   

(c)   

(d)   

 

 

 

 

 IFD 

 IFD 

 IFD 

Zone location 

V123 

𝐼123 

Intelligent 
Fault 

Diagnosis 

Algorithm 

SC: 1 or 0 

OC: 1 or 0 

Phase 

(1001.0101...) 

Measurements 

𝑉123 
 

Intelligent Fault 

Diagnosis 

Fault Type (short circuit, open circuit) 

Fault Zone (1, 2, 3,4) 
Fault Phase (1001, 0101, 0011…) 

Source 1 

𝐼123 
 

Side1 

230kv/50hz  

 

 

Source 2 

Zone 

2 

Zone 

3 

50km 50km 50km 50km 
Side2 

230kv/50hz 

∠27° 
 

 

Zone 

1 

Zone 

4 

SC1 or OC1 

 
SC2 or OC2 

 

 IFD2 
 

Source 2   
 IFD1 

Source 1   
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5. DIAGNOSTIC BY THE ARTIFICIAL 

NEURAL NETWORK ANN 

 

Figure 7 shows the synoptic diagram of 

diagnostics by ANN. 

 

 
Fig. 7. ANN Diagnosis 

 

Artificial Neural Network (ANN) is a network 

that uses complex mathematical models for 

information processing. They are based on 

functional models of neurons and synapses in the 

human brain. Similar to the human brain, neural 

networks connect simple nodes, also called neurons. 

The collection of these nodes forms a node network, 

hence the name "neural network". These neurons 

receive data input and then generates an output by 

combining the input with its internal activation state 

and threshold activation function.  

A neural network consists of connections, where 

each connection carries out the output of one neuron, 

which becomes the input of another neuron in the 

network. Each connection is assigned a weight, 

which represents its importance on the neural 

network. Any neuron can have a relationship with 

multiple input and output connections [31]. 

 

5.1. Neural network structure 

Neural network has a complex structure 

composed of artificial neurons, which can receive 

multiple inputs to generate output, in this study the 

input layer has six neurons for six inputs the currents 

magnitudes 𝐼1,𝐼2, 𝐼3 and the voltages magnitudes 

𝑉1,𝑉2,𝑉3. The number of the neurons in the hidden 

layer and the output layer changes due to outputs as 

we show next. This network is illustratedin figure 10. 

To generate the output signal, the value of V must 

be activated with the activation function. 

The Logistic Sigmoid or known as binary 

sigmoid was employed in this study to be the 

activation function for Hidden layer and the linear 

activation function is used for the output layer. The 

error signal is propagated from the output layer to the 

hidden layer for the p iteration. 

The output value targeted to the k neuron and the 

real output obtained by the k neuron at the output 

layer [32]. The logistic sigmoid activation function 

(Log Sigmoid Transfer Function) is: 

( )

1
( )

1 j
j V p

y p
e
−

=
+

       (5) 

 
Fig. 8. Log-Sigmoid transfer function 

 

The linear activation function (Pure line Transfer 

Function) is: 

1.k ky V=              (6) 

 
 
 
 

 
 

Fig. 9. Linear transfer function 
 

In this study, the used MLP architecture has been 

determined as (6, 40, 7). It means the dimensions of 

the layers are three (n=6) input variables, (m = 40) 

nodes in the hidden layer and seven (k=7) output 

nodes, respectively: 

 
Fig. 10. ANN structure 

 

5.2. Training algorithms (Levenberg-Marquardt 

method) 

The Levenberg-Marquardt algorithm was created 

to approach the second-order training speed without 

calculating the Hessian matrix. When the 

performance function has the form of a sum of 

squares (typical in training feed forward networks).   

 If Xp is the pth vector comprised of weight value 

and threshold value, then Xp+1 is calculated from: 

1
X X X

p p
= +

+
, 

1 1
X W X

p p
= +

+ +
, 

1
X W

p p
=

+
  (7) 

According to newton algorithm, ΔX is given by: 

( ) ( )
1

2X E x E x
−

 =− 

        (8) 

Then the Hessian matrix can be approximated as: 

𝐻 = 𝐽𝑇𝐽         (9) 

Where ∇2E (x) is the hessian matrix of error 

indicator function E (x). ∇E (x) is the gradient We 

define E(x) by the following equation: 

21( ) ( ) ( )
112

NE x e x
i

=  =         (10) 

Where e(x) is the training error. 

∇E (x) and  ∇2E (x) are calculated from Eq (11) and 

(12) respectively: 

ANN 

Diagnosis 

JB 

m 

SC fault (1 or 0)  

OC fault (1 or 0)  

Zone fault (1, 2, 3 or 4) 

Phafault (1or 0) 

Phbfault (1or 0) 

Phcfault (1or 0) 

GND fault (1or 0) 

Vabc Iabc 

Zs 

Source 

Transmission line 

Zone 1 Zone 2 

Fault 

-1 

1 

Vk 

yk 

-1 

1 

Vk 

yk 

Hidden layer 
Output layer 

Input layer 

𝑰𝒂
′  

𝑰𝒃
′  

𝑰𝒄
′  

𝑽𝒂
′  

𝑽𝒃
′  

𝑽𝒄
′  

1 

2 

3 

40 

1 

2 

3 

4 

5 

6 

7 

SC 

OC 

zone 

pha 

phb 

phc 

gnd 
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( ) ( ) ( )TE x J x e x =
         (11) 

2 ( ) ( ) ( ) ( )TE x J x e x S x= +
    (12) 

Where S(x)=∑ ei(x)  ∇
2ei(x). J(x)

N
i=1   is the jacobian 

matrix given by: 

 

J(x)=

[
 
 
 
 
 
𝜕𝑒1(𝑥)

𝜕𝑥1

𝜕𝑒1(𝑥)

𝜕𝑥2
…

𝜕𝑒1(𝑥)

𝜕𝑥𝑛
𝜕𝑒2(𝑥)

𝜕𝑥1

𝜕𝑒2(𝑥)

𝜕𝑥2
…

𝜕𝑒2(𝑥)

𝜕𝑥𝑛
… … … …

𝜕𝑒𝑛(𝑥)

𝜕𝑥1

𝜕𝑒𝑛(𝑥)

𝜕𝑥2
…

𝜕𝑒𝑛(𝑥)

𝜕𝑥𝑛 ]
 
 
 
 
 

   (13) 

According to gauss-newton algorithm, ∆X can be 

written as follows: 

1[ ( ) ( )] ( ) ( )TX J x J x J x e x− =−
      (14) 

Meanwhile, according to LM algorithm ∆X can 

be rewritten as follows: 

( 1)
[ ( ) ( ) ] ( ) ( )TX J x J x I J x e x

−
 =− +

    (15) 

and the gradient can be computed as: 

𝑔 = 𝐽𝑇𝑒          (16) 

Where J is the Jacobian matrix, which contains 

the first derivative of the network error with respect 

to the weight and bias, and (e(x): Training error) is 

the network error vector. The Jacobian matrix can be 

calculated by the standard back propagation 

technique, which is much simpler than calculating 

the Hessian matrix. The Levenberg-Marquardt 

algorithm uses this approximation to the Hessian 

matrix in the following Newton-like updates: 

  1
 –   .

1
X x H µI g

p k
−

= +
+      (17) 

 1   –    1.Xp xk JTJ µI JTe+ = + −
    (18) 

When the scalar μ is zero, this is just Newton's 

method, using an approximate Hessian matrix. 

When µ is larger, this becomes a gradient descent 

with a smaller step size. Newton's method is faster 

and more accurate near the minimum error, so the 

goal is to switch to Newton's method as soon as 

possible. Therefore, after each successful step 

(decrease of the performance function), μ 

willdecrease and increase only when the tentative 

step increases the performance function. In this way, 

in each iteration of the algorithm the performance 

function is always reduced [33, 34]. 

 

5.3. Training base 

5.3.1. Adaptation of measurements with neural 

network input 

To reduce the complexity of the neural network 

and to process all possible values, we can specify as 

inputs the numbering of the variation intervals for 

the quantities to be measured like represented in 

table 2 (Ia is an example, all the currents 𝐼𝑎  ,𝐼𝑏 , 𝐼𝑐 
magnitudes and voltages 𝑉𝑎,𝑉𝑏,𝑉𝑐 magnitudes were 

used), this method has the advantage that is covering 

all the zone from 1km to 50km thus doesn’t mix 

between the zones when the fault occurs on the 

zone’s boundaries and covers a large range of fault 

resistance. 

Table. 2. Variation intervals as ANN inputs 

 

Size 

measured 

Variation interval 

 

Interval numbering 

(specification of 

neural network 

inputs) 

 

Ia (pu) 

 

Ia≤ 0.015 1 

𝟎. 𝟎𝟏𝟓 <Ia≤0.03 2 

𝟎. 𝟎𝟑 <Ia≤0.045 3 

𝟎. 𝟎𝟒𝟓 <Ia≤ 0.1 4 

𝟎. 𝟏 <Ia≤ 0.6 5 

𝟎. 𝟔 <Ia≤1.27 6 

𝟏. 𝟐𝟕 <Ia≤1.71 7 

𝟏. 𝟕𝟏 <Ia≤2.61 8 

𝟐. 𝟔𝟏 <Ia≤9 9 

 

 

Va (pu) 

Va≤ 0.53 1 

𝟎. 𝟓𝟑 <Va≤ 0.7 2 

𝟎. 𝟕 <Va≤ 0.78 3 

𝟎. 𝟕𝟖 <Va≤0.85 4 

𝟎. 𝟖𝟓 <Va≤5 5 

 

5.3.2. Training table 

The following table 3 presents all the training 

data for ANN. 

 

6. DIAGNOSTIC BY FUZZY LOGIC METHOD 

 

Figure 11 represents the implantation of the 

fuzzy logic diagnosis system at the beginning of the 

transmission line. As we shown earlier that one IFD 

isn’t enough and it has to add another IFD at the 

other end of the transmission line like in figure 12. 

 

 
Fig. 11. Fuzzy logic implantation 

 

 
 
 
 
 
 

 

 
Fig. 12. Fuzzy logic implantation at both ends. 

 

6.1. Bloc diagram of fuzzy logic 

A simple overall organization of a fuzzy scheme 

consists of fuzzification, fuzzy inference system, 

fuzzy rule base and defuzzification as displayed in 

Figure 13 for fault identification and localization: In 

into a fuzzy set. Then, the fuzzy rule base  makes  it 
  

 

 

Fuzzy Logic Diagnoses 

JB 

m 

SC fault (1 or 0)  

OC fault (1 or 0)  

Zone fault (1, 2, 3 or 4) 

Pha fault (1or 0) 

Phb fault (1or 0) 

Phc fault (1or 0) 

GND fault (1or 0) 

Vabc Iabc 

Zs 

Source 

Transmission line 

Zone 1 Zone 2 

Fault 

m1 

IFD1 

Vabc1 Iabc1 

Zs1 

Source1 

Transmission line 

m2 
Zs2 

Source2 

Vabc1 Iabc1 

IFD2 

Zone1 Zone2 Zone3 Zone4 

JB1 JB2 

Fault 
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 Table 3. Training Values

 

 

 

No ia ib ic Va Vb Vc SC  OC Zone Pha Phb Phc GND 

1 5 5 5 5 5 5 0 0 0 0 0 0 0 

2 9 5 5 1 5 5 1 0 1 1 0 0 1 

3 5 9 5 5 1 5 1 0 1 0 1 0 1 

4 5 5 9 5 5 1 1 0 1 0 0 1 1 

5 9 9 5 1 1 5 1 0 1 1 1 0 1 

6 9 9 5 2 1 5 1 0 1 1 1 0 0 

7 5 9 9 5 1 1 1 0 1 0 1 1 1 

8 5 9 9 5 2 1 1 0 1 0 1 1 0 

9 9 5 9 1 5 1 1 0 1 1 0 1 1 

10 9 5 9 1 5 2 1 0 1 1 0 1 0 

11 9 9 9 1 1 1 1 0 1 1 1 1 1 

12 1 5 5 5 5 5 0 1 1 1 0 0 0 

13 5 1 5 5 5 5 0 1 1 0 1 0 0 

14 5 5 1 5 5 5 0 1 1 0 0 1 0 

15 1 1 5 5 5 5 0 1 1 1 1 0 0 

16 5 1 1 5 5 5 0 1 1 0 1 1 0 

17 1 5 1 5 5 5 0 1 1 1 0 1 0 

18 1 1 1 5 5 5 0 1 1 1 1 1 0 

19 8 5 5 2 5 5 1 0 2 1 0 0 1 

20 5 8 5 5 2 5 1 0 2 0 1 0 1 

21 5 5 8 5 5 2 1 0 2 0 0 1 1 

22 8 8 5 2 2 5 1 0 2 1 1 0 1 

23 7 8 5 4 2 5 1 0 2 1 1 0 0 

24 5 8 8 5 2 2 1 0 2 0 1 1 1 

25 5 7 8 5 4 2 1 0 2 0 1 1 0 

26 8 5 8 2 5 2 1 0 2 1 0 1 1 

27 8 5 7 2 5 4 1 0 2 1 0 1 0 

28 8 8 8 2 2 2 1 0 2 1 1 1 1 

29 2 5 5 5 5 5 0 1 2 1 0 0 0 

30 5 2 5 5 5 5 0 1 2 0 1 0 0 

31 5 5 2 5 5 5 0 1 2 0 0 1 0 

32 2 2 5 5 5 5 0 1 2 1 1 0 0 

33 5 2 2 5 5 5 0 1 2 0 1 1 0 

34 2 5 2 5 5 5 0 1 2 1 0 1 0 

35 2 2 2 5 5 5 0 1 2 1 1 1 0 

36 7 5 5 3 5 5 1 0 3 1 0 0 1 

37 5 7 5 5 3 5 1 0 3 0 1 0 1 

38 5 5 7 5 5 3 1 0 3 0 0 1 1 

39 7 7 5 3 3 5 1 0 3 1 1 0 1 

40 6 7 5 5 3 5 1 0 3 1 1 0 0 

41 5 7 7 5 3 3 1 0 3 0 1 1 1 

42 5 6 7 5 5 3 1 0 3 0 1 1 0 

43 7 5 7 3 5 3 1 0 3 1 0 1 1 

44 7 5 6 3 5 5 1 0 3 1 0 1 0 

45 7 7 7 3 3 3 1 0 3 1 1 1 1 

46 3 5 5 5 5 5 0 1 3 1 0 0 0 

47 5 3 5 5 5 5 0 1 3 0 1 0 0 

48 5 5 3 5 5 5 0 1 3 0 0 1 0 

49 3 3 5 5 5 5 0 1 3 1 1 0 0 

50 5 3 3 5 5 5 0 1 3 0 1 1 0 

51 3 5 3 5 5 5 0 1 3 1 0 1 0 

52 3 3 3 5 5 5 0 1 3 1 1 1 0 

53 6 5 5 4 5 5 1 0 4 1 0 0 1 

54 5 6 5 5 4 5 1 0 4 0 1 0 1 

55 5 5 6 5 5 4 1 0 4 0 0 1 1 

56 6 6 5 4 4 5 1 0 4 1 1 0 1 

57 6 6 5 5 4 5 1 0 4 1 1 0 0 

58 5 6 6 5 4 4 1 0 4 0 1 1 1 

59 5 6 6 5 5 4 1 0 4 0 1 1 0 

60 6 5 6 4 5 4 1 0 4 1 0 1 1 

61 6 5 6 4 5 5 1 0 4 1 0 1 0 

62 6 6 6 4 4 4 1 0 4 1 1 1 1 

63 4 5 5 5 5 5 0 1 4 1 0 0 0 

64 5 4 5 5 5 5 0 1 4 0 1 0 0 

65 5 5 4 5 5 5 0 1 4 0 0 1 0 

66 4 4 5 5 5 5 0 1 4 1 1 0 0 

67 5 4 4 5 5 5 0 1 4 0 1 1 0 

68 4 5 4 5 5 5 0 1 4 1 0 1 0 

69 4 4 4 5 5 5 0 1 4 1 1 1 0 
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the fuzzification stage, the input signals are mapped 

possible to decide the type of defect. Finally, in the 

defuzzification step, the fuzzy output set is mapped 

to the defect type [35]. 

 

 
 

Fig. 13. Block diagram of fuzzy logic 

 

6.2. Fuzzification 

It is the process of using the information in the 

knowledge base to convert crisp input values into 

fuzzy values. Although various types of curves can 

be used, Gauss, triangles and trapezoids are the most 

commonly used in fuzzification process. 

 

 
Fig. 14. Membership function 

 

The triangular type was used in our case. Where 

Ia, Ib, Ic, Va, Vb, Vc values were converted to a fuzzy 

values (very low, low, high) as represented in figure 

15. And, the fuzzification of the outputs is 

represented in figure 16. 

 

6.3. Rule base 

In this step, the Rule base is formulated as a finite 

number of rules. The rule base contains the rules that 

are to be used in making decisions. These rules are 

generally based on personal experience and 

intuition. A rule is composed of two main parts: an 

antecedent block (between the If and Then) and a 

consequent block (following Then). If (antecedent) 

Then (consequent) Like in our case if Ia, Ib, Ic, are 

high and Va,Vb,Vc are low then the system is clear and 

there is no fault. All the rules are shown in table 4. 

 

6.4. Inference 

Fuzzy decisions are produced in this process 

using the rules in the rule base. During this process, 

each rule is evaluated separately and then a decision 

is made for each individual rule. The result is a set of 

fuzzy decisions. Logical operators, such as “AND,” 

“OR,” and “NOT” define how the fuzzy variables 

are combined. 

 

6.5. Defuzzification 

Compared with the fuzzification process, 

defuzzification is an inverse transformation, because 

in this process, the fuzzy output is converted into a 

crisp value and applied to the system. In our 

application, we use the centroid method: 

i

n

i

ii

n

i
out

u

uh
U

1

1

=

=




=      (19) 

𝑢𝑖 is the membership function and ℎ𝑖  is its center. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Fuzzification current (Ia, Ib, and Ic) 

 
(b) Fuzzification Voltage (Va, Vb, and Vc) 

Fig. 15. Fuzzification Inputs 

 

 
Fig. 16. Fuzzification Outputs  

 

 

Crisp 

Inputs 

Crisp 

Outputs 

 

If-thenRules 

Fuzzification Defuzzification Inference 

Â 

y 

 

0 
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µ 

 membership function  

of fuzzy set Â 

 

Ia 

1 

0 
0,015 

0,03 
0,045 

0,1 
0,6 1,27 1,71 2,61 8,5 

VL1 VL2 VL3 VL4 H1 H2 H3 H4 H5 

 

Ib 

1 

0 
0,015 0,045 

0,1 
0,6 1,27 1,71 2,61 8,5 

VL1 VL2 VL3 VL4 H1 H2 H3 H4 H5 

0,03 
 

Ic 

1 

0 
0,015 

 
0,045 

0,1 
0,6 1,27 1,71 2,61 8,5 

VL1 VL2 VL3 VL4 H1 H2 H3 H4 H5 

0,03 

Va 
1 

0 
0,53 0,7 0,78 0,82 1,1 

L1 L2 L3 L4 L5 

0 

0 

Vc 
1 

0 
0,53 0,7 0,78 0,82 1,1 

L1 L2 L3 L4 L5 

0 

Vb 
1 

0 
0,53 0,7 0,78 0,82 1,1 

L1 L2 L3 L4 L5 

Zone 

1 

0 
0,5 

Q0 

1 1,5 2 2,5 3 3,5 4 4,5 5 

Q1 Q2 Q3 Q4 

0 

0 0,5 1 1,5 2 

SC 

1 

0 

Q0 Q1 

0 0,5 1 1,5 2 

OC 

1 

0 

Q0 Q1 

0 0,5 1 1,5 2 

Phb 

1 

0 

Q0 Q1 

0 0,5 1 1,5 2 

Pha 

1 

0 

Q0 Q1 

0 0,5 1 1,5 2 

GND 

1 

0 

Q0 Q1 

0 0,5 1 1,5 2 

Phc 

1 

0 

Q0 Q1 
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Table 4. Inferences Rules 

 

7. SIMULATION RESULTS 

 

This section presents the tests results of different 

faults on the transmission line to illustrate the 

reliability, the robustness and the response time of 

the IFD’s systems, using ANN and FL algorithms. 

The diagnostic systems used are capable of detecting 

(69 x 2 = 138) types of faults. Considering the 

tripping time of the protection equal to 200 msec. 

 

7.1. Diagnostic performances 

To test the performance of both diagnostic 

approaches, several types of fault are presented (SC: 

Short-Circuit or OC: Open Circuit). For each case, 

the variation of the three-phase currents and voltages 

in the two sides of the electrical line, the indication 

of the fault zone in the two sides of IFD, the fault 

type indication (SC or OC) and the fault phase 

identification (pha, phb, phc, GND) are studied. 

Every fault for all cases occurs at 0,1sec. 

No ia ib ic Va Vb Vc SC  OC Zone Pha Phb Phc GND 

1 H1 H1 H1 L5 L5 L5 Q0 Q0 Q0 Q0 Q0 Q0 Q0 

2 H5 H1 H1 L1 L5 L5 Q1 Q0 Q1 Q1 Q0 Q0 Q1 

3 H1 H5 H1 L5 L1 L5 Q1 Q0 Q1 Q0 Q1 Q0 Q1 

4 H1 H1 H5 L5 L5 L1 Q1 Q0 Q1 Q0 Q0 Q1 Q1 

5 H5 H5 H1 L1 L1 L5 Q1 Q0 Q1 Q1 Q1 Q0 Q1 

6 H5 H5 H1 L2 L1 L5 Q1 Q0 Q1 Q1 Q1 Q0 Q0 

7 H1 H5 H5 L5 L1 L1 Q1 Q0 Q1 Q0 Q1 Q1 Q1 

8 H1 H5 H5 L5 L2 L1 Q1 Q0 Q1 Q0 Q1 Q1 Q0 

9 H5 H1 H5 L1 L5 L1 Q1 Q0 Q1 Q1 Q0 Q1 Q1 

10 H5 H1 H5 L1 L5 L2 Q1 Q0 Q1 Q1 Q0 Q1 Q0 

11 H5 H5 H5 L1 L1 L1 Q1 Q0 Q1 Q1 Q1 Q1 Q1 

12 VL1 H1 H1 L5 L5 L5 Q0 Q1 Q1 Q1 Q0 Q0 Q0 

13 H1 VL1 H1 L5 L5 L5 Q0 Q1 Q1 Q0 Q1 Q0 Q0 

14 H1 H1 VL1 L5 L5 L5 Q0 Q1 Q1 Q0 Q0 Q1 Q0 

15 VL1 VL1 H1 L5 L5 L5 Q0 Q1 Q1 Q1 Q1 Q0 Q0 

16 H1 VL1 VL1 L5 L5 L5 Q0 Q1 Q1 Q0 Q1 Q1 Q0 

17 VL1 H1 VL1 L5 L5 L5 Q0 Q1 Q1 Q1 Q0 Q1 Q0 

18 VL1 VL1 VL1 L5 L5 L5 Q0 Q1 Q1 Q1 Q1 Q1 Q0 

19 H4 H1 H1 L2 L5 L5 Q1 Q0 Q2 Q1 Q0 Q0 Q1 

20 H1 H4 H1 L5 L2 L5 Q1 Q0 Q2 Q0 Q1 Q0 Q1 

21 H1 H1 H4 L5 L5 L2 Q1 Q0 Q2 Q0 Q0 Q1 Q1 

22 H4 H4 H1 L2 L2 L5 Q1 Q0 Q2 Q1 Q1 Q0 Q1 

23 H3 H4 H1 L4 L2 L5 Q1 Q0 Q2 Q1 Q1 Q0 Q0 

24 H1 H4 H4 L5 L2 L2 Q1 Q0 Q2 Q0 Q1 Q1 Q1 

25 H1 H3 H4 L5 L4 L2 Q1 Q0 Q2 Q0 Q1 Q1 Q0 

26 H4 H1 H4 L2 L5 L2 Q1 Q0 Q2 Q1 Q0 Q1 Q1 

27 H4 H1 H3 L2 L5 L4 Q1 Q0 Q2 Q1 Q0 Q1 Q0 

28 H4 H4 H4 L2 L2 L2 Q1 Q0 Q2 Q1 Q1 Q1 Q1 

29 VL2 H1 H1 L5 L5 L5 Q0 Q1 Q2 Q1 Q0 Q0 Q0 

30 H1 VL2 H1 L5 L5 L5 Q0 Q1 Q2 Q0 Q1 Q0 Q0 

31 H1 H1 VL2 L5 L5 L5 Q0 Q1 Q2 Q0 Q0 Q1 Q0 

32 VL2 VL2 H1 L5 L5 L5 Q0 Q1 Q2 Q1 Q1 Q0 Q0 

33 H1 VL2 VL2 L5 L5 L5 Q0 Q1 Q2 Q0 Q1 Q1 Q0 

34 VL2 H1 VL2 L5 L5 L5 Q0 Q1 Q2 Q1 Q0 Q1 Q0 

35 VL2 VL2 VL2 L5 L5 L5 Q0 Q1 Q2 Q1 Q1 Q1 Q0 

36 H3 H1 H1 L3 L5 L5 Q1 Q0 Q3 Q1 Q0 Q0 Q1 

37 H1 H3 H1 L5 L3 L5 Q1 Q0 Q3 Q0 Q1 Q0 Q1 

38 H1 H1 H3 L5 L5 L3 Q1 Q0 Q3 Q0 Q0 Q1 Q1 

39 H3 H3 H1 L3 L3 L5 Q1 Q0 Q3 Q1 Q1 Q0 Q1 

40 H2 H3 H1 L5 L3 L5 Q1 Q0 Q3 Q1 Q1 Q0 Q0 

41 H1 H3 H3 L5 L3 L3 Q1 Q0 Q3 Q0 Q1 Q1 Q1 

42 H1 H2 H3 L5 L5 L3 Q1 Q0 Q3 Q0 Q1 Q1 Q0 

43 H3 H1 H3 L3 L5 L3 Q1 Q0 Q3 Q1 Q0 Q1 Q1 

44 H3 H1 H2 L3 L5 L5 Q1 Q0 Q3 Q1 Q0 Q1 Q0 

45 H3 H3 H3 L3 L3 L3 Q1 Q0 Q3 Q1 Q1 Q1 Q1 

46 VL3 H1 H1 L5 L5 L5 Q0 Q1 Q3 Q1 Q0 Q0 Q0 

47 H1 VL3 H1 L5 L5 L5 Q0 Q1 Q3 Q0 Q1 Q0 Q0 

48 H1 H1 VL3 L5 L5 L5 Q0 Q1 Q3 Q0 Q0 Q1 Q0 

49 VL3 VL3 H1 L5 L5 L5 Q0 Q1 Q3 Q1 Q1 Q0 Q0 

50 H1 VL3 VL3 L5 L5 L5 Q0 Q1 Q3 Q0 Q1 Q1 Q0 

51 VL3 H1 VL3 L5 L5 L5 Q0 Q1 Q3 Q1 Q0 Q1 Q0 

52 VL3 VL3 VL3 L5 L5 L5 Q0 Q1 Q3 Q1 Q1 Q1 Q0 

53 H2 H1 H1 L4 L5 L5 Q1 Q0 Q4 Q1 Q0 Q0 Q1 

54 H1 H2 H1 L5 L4 L5 Q1 Q0 Q4 Q0 Q1 Q0 Q1 

55 H1 H1 H2 L5 L5 L4 Q1 Q0 Q4 Q0 Q0 Q1 Q1 

56 H2 H2 H1 L4 L4 L5 Q1 Q0 Q4 Q1 Q1 Q0 Q1 

57 H2 H2 H1 L5 L4 L5 Q1 Q0 Q4 Q1 Q1 Q0 Q0 

58 H1 H2 H2 L5 L4 L4 Q1 Q0 Q4 Q0 Q1 Q1 Q1 

59 H1 H2 H2 L5 L5 L4 Q1 Q0 Q4 Q0 Q1 Q1 Q0 

60 H2 H1 H2 L4 L5 L4 Q1 Q0 Q4 Q1 Q0 Q1 Q1 

61 H2 H1 H2 L4 L5 L5 Q1 Q0 Q4 Q1 Q0 Q1 Q0 

62 H2 H2 H2 L4 L4 L4 Q1 Q0 Q4 Q1 Q1 Q1 Q1 

63 VL4 H1 H1 L5 L5 L5 Q0 Q1 Q4 Q1 Q0 Q0 Q0 

64 H1 VL4 H1 L5 L5 L5 Q0 Q1 Q4 Q0 Q1 Q0 Q0 

65 H1 H1 VL4 L5 L5 L5 Q0 Q1 Q4 Q0 Q0 Q1 Q0 

66 VL4 VL4 H1 L5 L5 L5 Q0 Q1 Q4 Q1 Q1 Q0 Q0 

67 H1 VL4 VL4 L5 L5 L5 Q0 Q1 Q4 Q0 Q1 Q1 Q0 

68 VL4 H1 VL4 L5 L5 L5 Q0 Q1 Q4 Q1 Q0 Q1 Q0 

69 VL4 VL4 VL4 L5 L5 L5 Q0 Q1 Q4 Q1 Q1 Q1 Q0 



 

 DIAGNOSTYKA, Vol. 23, No. 4 (2022)  9 

Touati KOM, Boudiaf, M, Merzouk I, Hafaifa A.: Intelligent fault diagnosis of power transmission line using … 

In the 1st case, the appearance of a single-phase 

fault in the 1st Zone is applied in 4 different types: 

- SC Phase a - GND (both sides), 

- SC Phase a - GND (Side 1), 

- SC Phase a - GND (Side 2), 

- OC Phase a. 

Figures 17-24 show the results and the response 

of each IFD in the event of a single-phase short 

circuit fault SC Pha-GND occurring in the electrical 

line. Figures 17 and 18 show the transient behavior 

of three-phase currents and voltages in both sides.  

Can be notice: 

- A large decrease in voltage and a large increase in 

current (of phase a) on side 1. 

 - A slight decrease in voltage and a large increase in 

current (of phase a) on side 2. 

According to fuzzy logic, the fault zone 

represented as zone 1 to the IFD1 point of view and 

zone 4 to the IFD2 (Fig. 19). To both IFD systems 

this fault is a short-circuit (SC) as shown (Fig. 20). 

In Figure 21, fuzzy logic identifies the fault in phase 

(a) shorted to ground in both IFD systems. Figures 

22-24 show the performance of fault signalization by 

artificial neural networks. The same representation 

as the fuzzy logic earlier starting with fault zone 

(location) then the fault type to both IFD systems 

(short-circuit or open circuit) and the fault 

classification (the faulted phases). 

By using both intelligent diagnostic methods, the 

same signature of detection, identification and 

location of the fault is obtained. In both cases, fault 

signalization has been shown to be correct after 

small shifts and considerable transitional regime due 

to the random evolution of currents and voltages in 

both sides of the line. 

 

 
Fig. 17. vabc1 and iabc1 with SC fault of Pha-GND 

 

Figures 25-32 show the diagnosis performance of 

each IFD when applying a single-phase short circuit 

fault SC Pha-GND – Side 1. 

In figures 25 and 26, can be notice: 

- A significant increase in current and a decrease in 

voltage in phase a (side 1) during the fault. 

- Also, a low current and a slight transient voltage 

variation (in phase a) on side 2. 

 
 

 
Fig. 18. vabc2 and iabc2 with SC fault of Pha-GND 

 
Fig. 19. Fault zone detection for SC Pha-GND (by 

fuzzy logic) 

 
Fig. 20. Fault type identification for SC-Side1 and 

SC-Side2 (by fuzzy logic) 

 
Fig. 21. Fault phase identification Pha-GND  

(by fuzzy logic) 
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Fig. 22. Fault zone detection for SC Pha-GND  

(by neural networks) 

 

 
Fig. 23. Fault type identification for SC-Side1  

and SC-Side2 (by neural networks) 
 

 
Figure. 24. Fault phase identification Pha-GND  

(by neural networks) 

 

Using fuzzy logic makes it possible to obtain the 

performances like shown in figures 27, 28 and 29 

below: The results prove the correct signalization of 

the fault zone with a small delay at IFD2 (side 2) and 

a small transient regime at IFD1 (side 1) due to the 

transient evolution lasting time 20msec which is 

much less than 200 msec (the protection tripping 

time). In the same way, Figures 27 and 28 

successively show the identification of the fault type 

and the fault phase: A short circuit with respect to 

IFD1 (Side 1), an opening of circuit with respect to 

IFD2 (Side 2) and a fault signaling on phase a.  

Using the neural network, also the determination 

of the fault location is correct, type identification and 

fault phase identically with fuzzy logic (Figs. 30, 31 

and 32). Always there are fast shifts or transients due 

to random disturbance of current and voltage in both 

sides of the power line. 

 
Fig. 25. vabc1 and iabc1 with SC fault of Pha-GND-

Side1 

 
Fig. 26. vabc2 and iabc2 with SC fault of Pha-GND-

Side1  

 
Fig. 27. Fault zone detection for SC pha-GND-Side1  

(by fuzzy logic) 

 

Figures 33-40 show the diagnosis performance of 

each IFD when applying a single-phase short circuit 

fault SC Pha-GND – Side 2. 

In this case, a short circuit fault to side 2 of the 

power line. There is a small transient voltage 

disturbance and a cancellation of the current on 

phase (a) at side 01. And, a significant increase in 

current with a slight decrease in voltage on phase (a) 

at side 02 (Figs. 33 and 34).  
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Fig. 28. Fault type identification for SC-Side1  

and OC-Side2 (by fuzzy logic) 

 
Fig. 29. Fault phase identification Pha-GND-Side1  

(by fuzzy logic) 

 

 
Fig. 30. Fault zone detection for SC pha-GND-Side1  

(by neural networks) 

 
Fig. 31. Fault type identification for SC-Side1  

and OC-Side2 (by neural networks) 

 

 
Fig. 32. Fault phase identification Pha-GND-Side1  

(by neural networks) 

 

The implementation of two diagnostic methods 

(fuzzy logic and neural network) makes it possible to 

locate and identify the fault correctly with small fast 

transient variations: The fault in zone 1 compared to 

IFD1 and is a short-circuit on phase (a) at side 2 (Figs 

35, 36, 37, 38, 39 and 40). 

 
Fig. 33. vabc1and iabc1 with SC fault of Pha-GND-Side2 

 
Fig. 34. vabc2and iabc2 with SC fault of Pha-GND-Side2 

 
Fig. 35. Fault zone detection for SC pha-GND-Side2  

(by fuzzy logic) 
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Figure. 36. Fault type identification for OC-Side1  

and SC-Side2 (by fuzzy logic) 

 
Fig. 37. Fault phase identification Pha-GND-Side2 

 (by fuzzy logic) 

 
Fig. 38. Fault zone detection for SC pha-GND-Side2  

(by neural networks) 

 

 
Fig. 39. Fault type identification for OC-Side1 and SC-

Side2 (by neural networks) 

 
Fig. 40. Fault phase identification Pha-GND-Side2 

 (by neural networks) 

 

Figures 41-48 show the diagnosis results of each 

IFD when applying a single-phase open circuit fault 

OC in Pha. Figures 41 and 42 indicate simple 

disturbances of voltages followed by a stability 

towards the initial values and a cancellation of the 

currents of phase (a) in both sides due to the opening 

of the power line.  

The fuzzy logic was able to signal a fault in zone 

1 with respect to side 1 (Fig. 43) and to identify the 

opening of phase a (Fig. 44 and 45). 

The neural network also was able to signal and 

identify the same characteristics as fuzzy logic (Figs 

46, 47 and 48): A line opening fault on zone 1 and 

on phase (a). 

 

 

Fig. 41. vabc1 and iabc1 with OC fault of Pha 

 

Fig. 42. vabc2 and iabc2 with OC fault of Pha 
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Fig. 43. Fault zone detection for OC Pha (by fuzzy logic) 

 

 
Fig. 44. Fault type identification for OC-Side1  

and OC-Side2 (by fuzzy logic) 

 
Fig. 45. Fault phase identification Pha (by fuzzy logic) 

 

 
Fig. 46. Fault zone detection for OC Pha  

(by neural networks) 

 
Fig. 47. Fault type identification for OC-Side1 

 and OC-Side2 (by neural networks) 

 
Fig. 48. Fault phase identification Pha  

(by neural networks) 

 

In this case a two phase short circuit to ground 
fault (LL-G) is applied in zone 2 on both sides: 
Figures 49 and 50 show a decrease in voltage of two 
phases (a) and (b) in the two sides of the test network 
(line), and consequently the increase in current in the 
two phases (a) and (b) because of SC. 

The fuzzy logic was able to identify the correct 
fault zone; such as zone 2 in point of view of side 1 
system and zone 3 in point of view of side 2 system. 
The fault type identification is also found in both 
sides as a SC short circuit on both phases (a) and (b). 
Always transient conditions after the fault has been 
introduced but within very short delays (20 ms) 
compared to the tripping time of the protection 
circuit breaker 200 ms (Figs. 51, 52, 53). 

In the same way as fuzzy logic, the neural 
network was capable to obtain approximately the 
same performance of localization and identification. 
The important transient regimes are remarkable in 
comparison with fuzzy logic, after the occurrence of 
the fault. 

 
Fig. 49. vabc1 and iabc1 with SC fault of Pha-Phb-GND 
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Fig. 50. vabc2 and iabc2 with SC fault of Pha-Phb-GND 

 
Fig. 51. Fault zone detection for SC Pha-Phb-GND  

(by fuzzy logic) 

 
Fig. 52. Fault type identification for SC-Side1  

and SC-Side2 (by fuzzy logic) 

 
Fig. 53. Fault phase identification Pha-Phb-GND  

(by fuzzy logic) 

 
Fig. 54. Fault zone detection for SC Pha-Phb-GND 

 (by neural networks) 

 
Fig. 55. Fault type identification for SC-Side1  

and SC-Side2 (by neural networks) 

 

 
Fig. 56. Fault phase identification Pha-Phb-GND  

(by neural networks) 

 

As the same as previous case (two-phase ground 
(LL-G) fault), applying the same type of fault with a 
displacement by 15 km towards side 2 (zone2). The 
characteristics show practically the same electrical 
signal variations with slight decrease in currents (in 
SC fault phases). Regarding the detection, 
localization and fault identification performance for 
both diagnostic strategies (fuzzy logic and the neural 
network) the same results are obtained compared to 
the previous case (Figs. 57, 58, 59, 60, 61, 62, 63 and 
64). 
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Fig. 57. vabc1and iabc1 with SC fault of Pha-Phb-GND 

(Fault displacement at 15 km)  

 
Fig. 58. vabc2 and iabc2 with SC fault of Pha-Phb-GND 

(Fault displacement at 15 km) 

 

 
Fig. 59. Fault zone detection for SC Pha-Phb-GND  

(by fuzzy logic) : Fault displacement at 15 km 

 
Fig. 60. Fault type identification for SC-Side1  

and SC-Side2 (by fuzzy logic): Fault displacement  

at 15 km  
 

 
Fig. 61. Fault phase identification for Pha-Phb-GND: 

Fault displacement at 15 km (by fuzzy logic) 

 

 
Fig. 62. Fault zone detection for SC Pha-Phb-GND  

(by neural networks): Fault displacement at 15 km  
 

 
Fig. 63. Fault type identification for SC-Side1  

and SC-Side2 (by neural networks): Fault  

displacement at 15 km.  

 
Fig. 64. Fault phase identification Pha-Phb-GND  

(by neural networks): Fault displacement at 15 km 

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.5

-1

-0.5

0

0.5

1

1.5

v
a

b
c1

 (
p

u
)

time (sec)

0 0.05 0.1 0.15 0.2 0.25 0.3
-4

-2

0

2

4

ia
b

c1
 (

p
u

)

time (sec)

0 0.05 0.1 0.15 0.2 0.25 0.3
-2

-1

0

1

2

v
a

b
c
2

 (
p

u
)

time (sec)

0 0.05 0.1 0.15 0.2 0.25 0.3
-3

-2

-1

0

1

2

3

ia
b

c
2

 (
p

u
)

time (sec)

0 0.1 0.2 0.3
-1

0

1

2

3

4

5

zo
ne

 f
au

lt
 f

or
 s

id
e 

1

time (sec)

0 0.1 0.2 0.3
-1

0

1

2

3

4

5

zo
ne

 f
au

lt
 f

or
 s

id
e 

2

time (sec)

transient

time

transient

time

Zone 2 for side 1

Zone 3 for 

side 2

0 0.1 0.2 0.3
-0.5

0

0.5

1

1.5

S
C

 d
e
te

c
ti

o
n

 f
o

r
 I

F
D

1

time (sec)

0 0.1 0.2 0.3
-0.5

0

0.5

1

1.5

S
C

 d
e
te

c
ti

o
n

 f
o

r
 I

F
D

2

time (sec)

0 0.1 0.2 0.3
-0.5

0

0.5

1

1.5

O
C

 d
e
te

c
ti

o
n

 f
o

r
 I

F
D

1

time (sec)

0 0.1 0.2 0.3
-0.5

0

0.5

1

1.5

O
C

 d
e
te

c
ti

o
n

 f
o

r
 I

F
D

2

time (sec)

tt

tt

tt
SC fault detection SC fault detection

no fault no fault

no fault no fault no fault no fault

tt

0 0.1 0.2 0.3
-0.5

0
0.5

1
1.5

p
h

a
 I

F
D

1

time (sec)

0 0.1 0.2 0.3
-0.5

0
0.5

1
1.5

p
h

a
 I

F
D

2

time (sec)

0 0.1 0.2 0.3
-0.5

0
0.5

1
1.5

p
h

b
 I

F
D

1

time (sec)

0 0.1 0.2 0.3
-0.5

0
0.5

1
1.5

p
h

b
 I

F
D

2

time (sec)

0 0.1 0.2 0.3
-0.5

0
0.5

1
1.5

p
h

c
 I

F
D

1

time (sec)

0 0.1 0.2 0.3
-0.5

0
0.5

1
1.5

p
h

c
 I

F
D

2

time (sec)

0 0.1 0.2 0.3
-0.5

0
0.5

1
1.5

g
n

d
 I

F
D

1

time (sec)

0 0.1 0.2 0.3
-0.5

0
0.5

1
1.5

g
n

d
 I

F
D

2

time (sec)

tt

tt

tt

tt

tt

tt
tt

tt

no fault

no faultno fault

no fault

no fault no fault

no fault no faultno fault

no fault fault detection fault detection

fault detectionfault detection

fault detectionfault detection

0 0.1 0.2 0.3
-1

0

1

2

3

4

5

zo
ne

 f
au

lt
 f

or
 s

id
e 

1

time (sec)

0 0.1 0.2 0.3
-1

0

1

2

3

4

5

zo
ne

 f
au

lt
 f

or
 s

id
e 

2

time (sec)

tttt

zone 2 for side 1

zone 3 for side 2

0 0.1 0.2 0.3
-0.5

0

0.5

1

1.5

S
C

 d
e
te

c
ti

o
n

 f
o

r
 I

F
D

1

time (sec)

0 0.1 0.2 0.3
-0.5

0

0.5

1

1.5

2

2.5

S
C

 d
e
te

c
ti

o
n

 f
o

r
 I

F
D

2

time (sec)

0 0.1 0.2 0.3
-0.5

0

0.5

1

1.5

O
C

 d
e
te

c
ti

o
n

 f
o

r
 I

F
D

1

time (sec)

0 0.1 0.2 0.3
-1

-0.5

0

0.5

1

1.5

O
C

 d
e
te

c
ti

o
n

 f
o

r
 I

F
D

2

time (sec)

tt

tttt

no fault

no fault no fault

no fault no fault

no fault

SC fault detection

SC fault detection

tt

0 0.1 0.2 0.3

-1

0

1

p
h

a
 I

F
D

1

time (sec)

0 0.1 0.2 0.3

-3
-2
-1
0
1

p
h

a
 I

F
D

2

time (sec)

0 0.1 0.2 0.3
-0.5

0
0.5

1
1.5

p
h

b
 I

F
D

1

time (sec)

0 0.1 0.2 0.3
-2

-1

0

1

p
h

b
 I

F
D

2

time (sec)

0 0.1 0.2 0.3

-1

0

1

p
h

c
 I

F
D

1

time (sec)

0 0.1 0.2 0.3
-2

-1

0

1

p
h

c
 I

F
D

2

time (sec)

0 0.1 0.2 0.3

0

1

2

g
n

d
 I

F
D

1

time (sec)

0 0.1 0.2 0.3

0

1

2

g
n

d
 I

F
D

2

time (sec)

no fault

no fault

no fault no fault

no fault

no fault

no fault

no fault no fault

no fault

fault detection

fault detectionfault detection

fault detection

fault detection
fault detection



 

 DIAGNOSTYKA, Vol. 23, No. 4 (2022)  16 

Touati KOM, Boudiaf, M, Merzouk I, Hafaifa A.: Intelligent fault diagnosis of power transmission line using … 

To test the effectiveness of the diagnostic system 
in several fault variants, a two-phase short-circuit 
fault isolated from ground on zone 3 is studied in this 
case: The short circuit fault between the two phases 
(a) and (b): (The drop phase (a) on phase (b)). This 
type of fault allows an imbalance between the three 
phase’s voltage and the three phase’s current in the 
two sides of networks (Figs. 65, 66). The fuzzy logic 
algorithm was able to locate the SC fault correctly in 
zone 3 with respect to side 1 and zone 2 with respect 
to side 2. This method also is able to signal the fault 
on both phases (a) and (b). Likewise, the neural 
network is capable of detecting the SC fault on the 
two phases (a) and (b) in zone 3 compared to side 1 
as shown in figures 70, 71 and 72. 

 

 
Fig. 65. vabc1 and iabc1 with SC fault of Pha-Phb 

 

 
Fig. 66. vabc2 and iabc2 with SC fault of Pha-Phb 

 

 
Fig. 67. Fault zone detection for SC Pha-Phb  

(by fuzzy logic) 

 
Fig. 68. Fault type identification for SC-Side1  

and SC-Side2 (by fuzzy logic) 

 
Fig. 69. Fault phase identification Pha-Phb  

(by fuzzy logic) 

 

 
Fig. 70 . Fault zone detection for SC Pha-Phb  

(by neural networks) 

 

 
Fig. 71. Fault type identification for SC-Side1  

and SC-Side2 (by neural networks) 
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Fig. 72. Fault phase identification Pha-Phb  

(by neural networks) 
 

7.2. Robustness test 

To test the two strategies (fuzzy logic and the 

neural network) robustness, two tests are applied: 
- Fault resistance variation (from 0Ω to 15Ω); 
- Load variation: Variation of the voltage phase shift 
angle of source 2 (from 27o to 10o). 

A single phase (LG) resistive SC ground fault is 

applied in zone 2 on side 1 (the same type of fault in 

section "7.1" but with a resistance of 15Ω). Figures 

73 and 74 describe the variation in the electrical 

transient behavior (voltage-current) in the two sides 

of the test network: Practically, the same situation is 

obtained with the case of section "7.1": Where the 

fault resistance is zero. Despite the variation of the 

fault resistance from 0Ω to 15Ω, the fuzzy logic 

algorithm was able to signal the fault zone (Fig. 75), 

the type of fault (Fig. 76) and the identification of the 

phase of the fault (Fig. 77) correctly. The only 

difference is the considerable increase in the 

transient signaling and identification time after the 

fault occurrence. Also the neural network capable of 

reaching high signaling performance comparable to 

fuzzy logic with much lower transient delays 

compared to the breaker trip time (See Figures 78, 

79 and 80). 

 
Fig. 73. vabc1 and iabc1 with SC fault of Pha-GND-Side1: 

Fault resistance at 15 Ω 

 

 
Fig. 74. vabc2 and iabc2 with SC fault of Pha-GND-Side1: 

Fault resistance at 15 Ω 

 
Fig. 75. Fault zone detection for SC Pha-GND-Side1  

(by fuzzy logic): Fault resistance at 15 Ω  

 
Fig. 76. Fault type identification for SC-Side1  

and OC-Side2 (by fuzzy logic): Fault resistance at 15 Ω 

 

 
Fig. 77. Fault phase identification Pha-GND-Side1 

 (by fuzzy logic): Fault resistance at 15 Ω. 
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Fig. 78. Fault zone detection for SC Pha-GND-Side1  

(by neural networks): Fault resistance at 15 Ω 

 
Fig. 79. Fault type identification Pha-GND-Side1 

 (by neural networks): Fault resistance at 15 Ω 

 
Fig. 80. Fault phase identification Pha-GND-Side1  

(by neural networks): Fault resistance at 15 Ω 

 

In this part an application of other disturbance in 

form of load variation or a variation in the power 

transmitted by the transmission line (by varying the 

voltage phase angle in source 2 from 27o to 10o) is 

analyzed. This disturbance causes the current 

increase and the voltage drop of phase (a) at side 1, 

and also the cancellation of the current of phase (a) 

without voltage change due to of the opening of the 

line at the fault point in side 2 (See figures 81 and 

82). 

Always fuzzy logic is able to identify all the fault 

characteristics with a significant increase in the 

transient signaling duration: This is the largest 

compared to all the previous cases, as shown in 

figures 83, 84 and 85. Neural network signatures 

describe the same performances at the same transient 

durations compare to the fuzzy logic (See figures 86, 

87 and 88). 

 
Fig. 81. vabc1 and iabc1 with SC fault of Pha-GND-Side1: 

For load variation 

 
Fig. 82. vabc2 and iabc2 with SC fault of Pha-GND-Side1: 

For load variation 

 
Fig. 83. Fault zone detection for SC Pha-GND-Side1  

(by fuzzy logic): For load variation 

 
Fig. 84. Fault type identification for SC-Side1 and  

OC-Side2 (by fuzzy logic): For load variation 
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Fig. 85. Fault phase identification Pha-GND-Side1 

(by fuzzy logic): For load variation 

 
Fig. 86. Fault zone detection for SC Pha-GND-Side1 

 (by neural networks): For load variation 

 
Fig. 87. Fault type identification for SC-Side1  

and OC-Side2 (by neural networks): For load variation 

 
Fig. 88. Fault phase identification Pha-GND-Side1  

(by neural networks): For load variation 

 

8. CONCLUSION 

 

This work proves the intelligent diagnosis by 

fuzzy logic and by the artificial neural network is a 

very efficient and very powerful solution for the 

monitoring of electrical transmission lines. Three-

phase voltage and current signals were extracted 

from the measurements devices at both ends of the 

transmission line are used to synthesize these 

diagnostic systems, in which that the proposed 

methods eliminate the necessity of complex features 

extraction process and work directly on these signals 

amplitudes, this technique and the novel training 

strategy which uses a few training samples in form 

of intervals, thus having a great advantage of 

reducing the computational time and improving the 

performance.  

The accuracy of both methods was evaluated by 

simulating a three-phase (230 kV, 50 Hz) 

transmission line with the length of 200 km. both 

methods were tested in different scenario such as 

different fault types, variations in fault resistance and 

in load phase angle. 

In the execution of three tasks of detection, 

classification and localization of faults, the results 

were very promising indicating that both methods of 

them are reliable, fast (response time 20 ms which is 

shorter than the protection tripping time 200ms) and 

accurate (The fault zone is well determined when the 

fault occurs on the zone’s boundaries and covers a 

large range of fault resistance) in addition. 

This contribution also explains the technical 

obligation to integrate two diagnostic stations on the 

two power line terminals.  
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